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Abstract. Cognitive models of memory retrieval aim to describe human learning
and forgetting over time. Such models have been successfully applied in digital
systems that aid in memorizing information by adapting to the needs of indi-
vidual learners. The memory models used in these systems typically measure
the accuracy and latency of typed retrieval attempts. However, recent advances
in speech technology have led to the development of learning systems that
allow for spoken inputs. Here, we explore the possibility of improving a cog-
nitive model of memory retrieval by using information present in speech sig-
nals during spoken retrieval attempts. We asked 44 participants to study vocab-
ulary items by spoken rehearsal, and automatically extracted high-level prosodic
speech features—patterns of stress and intonation—such as pitch dynamics,
speaking speed and intensity from over 7,000 utterances. We demonstrate that
some prosodic speech features are associated with accuracy and response latency
for retrieval attempts, and that speech feature informed memory models make
better predictions of future performance relative to models that only use accu-
racy and response latency. Our results have theoretical relevance, as they show
how memory strength is reflected in a specific speech signature. They also have
important practical implications as they contribute to the development of memory
models for spoken retrieval that have numerous real-world applications.

Keywords: Adaptive Learning · Cognitive Modeling · Automatic Speech
Recognition ·Machine learning · Speech prosody · Pitch · Speaking Speed ·
Intensity

1 Introduction

Model-based adaptive learning systems optimize learning by tailoring learning proce-
dures to the needs of the individual learner [11,14,22]. To this end, such systems aim to
estimate and predict the extent to which a learner has successfully memorized informa-
tion. As memory strength cannot be observed directly, models of memory retrieval use
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behavioral proxies, such as accuracy scores and response latencies to make informed
predictions [1,15,26]. Here, we will build upon a number of recent studies showing
that human speech contains information on a speaker’s emotional state, confidence, and
the accuracy of the spoken response [7,10]. The aim of this study is to explore the
theoretical and practical feasibility of using the information present in spoken retrieval
attempts to improve cognitive models of memory retrieval that can be applied in adap-
tive learning systems. To that end, we will here examine (a) whether the results of earlier
studies, which identified a specific prosodic speech signature associated with accuracy
and speaker confidence, generalize to a learning paradigm specifically, and (b) whether
the information present in spoken retrieval attempts can be used to improve predictions
of memory retrieval success in an applied learning setting.

As the extent to which a learner has successfully memorized an item is a latent
state that cannot be measured directly, cognitive models of learning and forgetting use
behavioral proxies. Response accuracy is a logical candidate, as it indicates whether
or not the learner could successfully retrieve the memorandum. Correspondingly, accu-
racy is used in many models that predict performance [15,23]. However, using (only)
accuracy as a behavioral index of memory strength results in a number of issues. First,
accuracy-based models of forgetting have difficulties accounting for the passage of time
between events (for example, in early Bayesian knowledge tracing models, information
was never forgotten once an item flipped to the “known” state after an accurate response
[13]). Second, using accuracy as a proxy of memory strength does not allow for mean-
ingful discrimination within correct responses, and as a consequence, accurate perfor-
mance predictions require many incorrect responses [19]. Because of these limitations,
some models use the latency of a response in addition to its accuracy to predict perfor-
mance. A core assumption these models rely on is the link between response latency
and memory strength [4]. An abundance of experimental data supports this link: Faster
responses are generally associated with more accurate responses and a stronger asso-
ciation between cue and response compared to slower responses[21]. Using response
latency in addition to accuracy to predict learner performance has been proven to be
successful in a range of adaptive learning applications [11,15,19,21].

An example of a successful approach to modeling forgetting using accuracy and
response latency is the MemoryLab adaptive scheduling system www.memorylab.nl/
en. The system is based on the ACT-R theory’s declarative memory framework [1]. In
this cognitive model, individual facts are represented as a memory chunk that has a cer-
tain activation, which corresponds to the fact’s strength in memory. It gets boosted every
time a fact is rehearsed and gradually decays over time if an item is not repeated. As
some facts are more difficult to learn than other facts, and as some learners forget facts
at a different rate than other learners, all facts are given a unique decay rate parameter
for all learners, which allows the model to vary the rate at which items are forgot-
ten between learners and between facts. The model relies on the above-mentioned link
between retrieval speed and the memory strength—or activation—of that fact. Combin-
ing the link between response latency and memory activation with its activation decay
functions, the model can calculate expected response times for retrieval attempts at any
future point in time. Observed discrepancies between expected and observed response
times and accuracy scores can consequently be used to update decay parameters, result-
ing in a system that can accurately capture and predict forgetting over time [20,24].

www.memorylab.nl/en
www.memorylab.nl/en
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Accuracy and latency comprise only a part of all potential sources of information
that may be used to inform models that aim to predict forgetting. In this study, we will
focus on spoken language, which contains prosodic speech features (PSFs). PSFs are
high-level properties of units of speech longer than individual phonemic segments, such
as syllables, words or sentences [17]. PSFs can be roughly divided into three categories.
First, intonation is the melodic pattern of an utterance and refers to the dynamics in
pitch over the duration of a speech segment. Second, rhythm is defined by dynamics
in timing, or speaking speed, over the duration of the speech segment. Third, stress
refers to intensity (loudness) given to a syllable of speech, resulting in changes in rel-
ative intensity. Prosodic information usually reflects information that is not necessarily
present in grammar or choice of vocabulary, such as the emotional state of the speaker,
emphasis, or the form of utterance (e.g., question versus statement versus command)
[27,29].

Of particular importance for the current study is the idea that speakers implicitly
convey their levels of certainty about a response through speech prosody. For exam-
ple, in many languages, speakers end a sentence or word with raising pitch and lower
intensity when asking a question or to express uncertainty about a response [10]. Lis-
teners are able to decode these prosodic speech signatures across languages and cul-
tures [7]. Next to the idea that speech prosody conveys subjective speaker confidence,
a recent study by Goupil and Aucouturier demonstrated that objective accuracy is dis-
tinctly reflected in the speech signal [6]. In their study, participants were instructed to
complete a visual detection task: A word was briefly presented on the screen, followed
by a visual mask. After a short interval, participants needed to verbally choose which
word they saw from a number of alternatives and rate their confidence in the response.
The results showed that the participants’ speaking speed and intonation were associated
with the objective accuracy of the response, and the intensity of the response was asso-
ciated with subjective confidence. To date, it is unclear if the above mentioned effects
generalize to the context of a learning paradigm.

Overall, earlier findings suggest that a speech signal for spoken retrieval attempts
may contain information that can be used to improve models of memory retrieval in two
ways. On one hand, as they are associated to objective accuracy, they may directly carry
information about the latent memory strength of a response. At the same time, they may
carry information about memory strength indirectly, as they are associated to subjective
confidence in the response. In the current study, we aim to explore the hypotheses that
these PSFs are indeed informative in a learning context and that they can be used to
improve models of memory retrieval.

To pursue these research questions, we will rely on recent advancements in speech
technology which have led to the development of adaptive learning systems that allow
for spoken input. Such systems allow users to efficiently practice pronunciation, which
is an important part of language acquisition that is largely omitted in traditional
approaches [5]. Furthermore, they can be applied in situations where users do not have
the ability (for example, young children) or opportunity (for example, while driving
a car) to type. Finally, spoken learning allows for the extraction of PSFs in the spo-
ken utterances. Compared to more traditional approaches to automatic speech process-
ing, that often rely on deep learning–based classification of spectral components of the
speech signal [12], extracting PSFs from the speech signal is computationally relatively
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Fig. 1. Design and research questions. Participants saw a cue and responded using speech. Using
automatic speech recognition (ASR), the accuracy (ACC) and response time (RT) of the response
is determined. The first research question examines if PSFs derived from the speech signal are
associated to accuracy and response time on the same trial. The second research question consid-
ers if current repetition (N) PSFs can be used to improve predictions for future repetition (N + X)
accuracy and response time for the same item.

inexpensive [25]. In short, advances in speech technology have made the implemen-
tation of speech-based learning systems, in which PSFs are automatically extracted,
practically feasible.

Given the growing popularity and practical feasibility of speech-controlled learn-
ing applications, we here explore the possibility of exploiting information present in
the speech signal to improve cognitive models of memory retrieval used in personal-
ized learning applications. To that end, we first aim to extend earlier studies that find a
specific PSF signature associated with accuracy and with subjective confidence to the
context of a memory retrieval paradigm specifically (see Fig. 1, Question 1). To fore-
shadow the results, we indeed found an association between PSFs and accuracy and
response latency for spoken retrieval attempts. Second, in this study, we are the first to
explore the possibility of improving predictions of future retrieval performance using
a model that incorporates PSFs for previous attempts compared to a model uses accu-
racy and response latency only (see Fig. 1, Question 2). To foreshadow the results, we
found that using previous repetition PSFs in addition to accuracy and response latency
substantially improves predictions of future retrieval performance.

2 Methods

The analyses reported in this study are based on data from the experiment reported in
[28], which demonstrated that latency-based adaptive learning algorithms can improve
learning efficiency in speech-based learning systems. That study used four within-
subjects conditions: two learning modality conditions (typing-based and speaking-
based learning) and two item scheduling conditions (fully adaptive MemoryLab learn-
ing, based on the learners’ response times and accuracy scores, and less adaptive
flashcard-inspired learning, using the learners’ accuracy only). All analyses reported
here are based on the speech conditions of the experiment only. For the first research
question (exploring the extent to which different PSFs can be used to explain per-
formance on the same trial) data from both scheduling conditions was included. The
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second research question explored whether using PSFs can result in increased perfor-
mance predictions compared to adaptive scheduling systems that used response times
and accuracy scores only. Therefore, only data from the MemoryLab adaptive schedul-
ing condition was included. We will briefly reiterate the relevant details of the study
here, but for more details, see [28]. Materials, analysis scripts, data and code to recreate
the current experiment and analyses are available on https://osf.io/dfexp/.

2.1 Participants

In total, data from 44 participants was available for analysis. This sample size was cho-
sen based on previous studies [28]. Participants were first-year Psychology students that
received course credit for participants. Participants were 17–29 years of age, and 73%
female. Participants were native Dutch speakers and indicated that they were fluent in
English. Participants gave informed consent and the study was approved by the ethi-
cal committee of the department of Psychology at the University of Groningen (study
approval code: PSY-2021-S-0025).

2.2 Design and Procedure

Participants were asked to study the English translation of Swahili vocabulary items.
For the first presentation of an item, participants saw a Swahili word on the computer
screen in text, together with the written English translation of this word. Addition-
ally, the spoken English translation of the word was presented through headphones. In
all subsequent presentations, only the Swahili word was shown, and participants were
instructed to speak the correct English translation, after which they received corrective
written and auditory feedback. Voice utterances were transcribed to text automatically
and in real time using the Google Web Speech API to provide corrective feedback.
To prevent that minor transcription, tense or number errors would result in scoring the
response as incorrect, responses were considered correct if Levenshtein’s edit distance
from response to answer [30] was equal to or less than 2. Response times were defined
as the time elapsed between the start of the presentation of the item and the time at
which the participant started speaking (voice onset time). In the MemoryLab adap-
tive scheduling conditions, items were scheduled based on the accuracy and latency of
previous responses (see Introduction). For a more detailed description of the model,
see [18,23].

2.3 Materials

For details on the materials used (word lists, exemplar pronunciations) as well as the
setup (software and hardware) used in the experiment, see [28].

2.4 Speech Feature Extraction

PSFs were extracted after data collection using Praat 6.2.07 [3]. Before extracting PSFs,
all silences were trimmed based on zero-crossings and short term intensity. We selected
PSFs to include in the analyses based on previous literature (pitch slope, intensity,

https://osf.io/dfexp/
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speaking speed) and on an exploratory basis (average pitch, jitter, shimmer). Subse-
quently, we extracted the following PSFs for each utterance: (1) the fundamental fre-
quency for each 0.01 s window in the speech signal; (2) the average frequency over the
full duration of the speech signal; (3) the average intensity over the duration over the
speech signal; (4) the speaking speed defined as the average number of syllables uttered
per second; (5) mean local jitter and (6) mean local shimmer. Finally, (7) we used least
squares linear regression on all pitch observations in an utterance to compute the pitch
slope. All PSFs were standardized within participants.

2.5 Data and Statistical Analyses

Statistical analyses were conducted in R 3.4.1 [16]. Trials containing PSFs that were
more than 5 standard deviations above or below the mean value, as well as trials with
response latencies below 200ms, were considered outliers and were removed from the
data set before analyses. In total, 1.02% of all trials were excluded based on these
criteria. After preprocessing, the data set contained a total of 7,334 learning trials from
44 participants.

To examine the association between PSFs and response accuracy and latency on the
same trial, we computed Pearson’s correlations. In addition, we fitted four mixed effects
regression models to explain accuracy (logistic mixed effects regression models) and
response latency (linear mixed effects regression models) using PSFs. In these models,
standardized PSFs were added as fixed effects, and we controlled for by-item and by-
participant variation by adding these factors as random effects to the models [2].

To explore if PSFs can be used to improve the adaptive learning model predictions,
we trained and tested two variations of two regression models to predict (a) current
trial response latency and (b) accuracy. Because regression analyses with a large num-
ber of predictor variables have a tendency to over-fit the data (reducing out-of-sample
predictive properties) we used elastic-net penalized regression [31]. We used 10-fold
cross validation to choose the optimal elastic net hyperparameters for mixture (alpha)
and penalty (lambda). Both sets of models contained predictions based on the memory
activation estimated during learning by the MemoryLab model as predictor. The mod-
els differed by their inclusion of the PSFs: only one set of models contained PSFs on
previous trials. We included PSFs for up to five repetitions back for the same item. All
models were trained and tested using a second 10-fold cross validation procedure, in
which the models were trained on 90% of the data and tested on the remaining 10% of
data 10 times. Because of the unbalanced nature of the sample (more correct than incor-
rect responses), we report average test classification precision, recall and F1-score met-
rics for the models that predict accuracy [8]. We report average test R-squared values,
as well as root mean square error (RMSE) values, for the models predicting response
latencies.

3 Results

3.1 The Association Between Speech Prosody and Memory Retrieval
Performance

The first main goal of this study is to test the reliability of earlier studies that find an
association between some PSFs and speaker confidence and accuracy [6,7,9], and to
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examine the exact way in which these effects can be found in a learning paradigm.
Figure 2A shows Pearson’s correlations between accuracy scores, response times, and
PSFs for spoken retrieval attempts during learning. The top two rows of Fig. 2A show
that there are several PSFs that correlate significantly with accuracy and response laten-
cies. First, in line with earlier literature [6], we find that standardized pitch slope pos-
itively correlates with response times, and negatively correlates with correctness, indi-
cating that longer response times and lower accuracy are associated with rising pitch.
Average standardized intensity is negatively associated with response times and posi-
tively associated with correctness, indicating more accurate and faster responses are, on
average, louder. Finally, speaking speed is negatively associated to response times and
positively associated to correctness indicating that faster and more accurate responses
are associated with higher speaking speed.

To further corroborate the correlational analyses reported above, we fitted four
mixed effects regression models. Table 1.1 shows the results of the model predicting
current trial accuracy from standardized pitch slope, speaking speed, intensity, jitter,
shimmer, and average pitch1. The results show that pitch slope, speaking speed, and
average intensity significantly explain accuracy: The lower the pitch slope, the higher
the speaking speed and the higher the intensity, the higher the accuracy of the same
response. Shimmer, jitter, and average pitch do not explain accuracy. When response
times are added to the model (Table 1.2), pitch slope and intensity still significantly
explain accuracy.

Fig. 2. A. Pearson’s correlations between accuracy, response latencies, and PSFs for the same spo-
ken retrieval attempt. Note: ∗p<.05; **p<.01; ∗∗∗p<.001. B. Absolute PSF importance (penal-
ized regression coefficient (ms)) in predicting current repetition recall performance (response
latency) from previous repetition PSFs. Black numbers indicate how many trials back the PSF
was recorded. Circles show positive regression coefficients, triangles show negative coefficients.

1 The logistic regression coefficients in Table 1.1 and 1.2 can be converted to probabilities using
an inverse logit transform. For example, in Table 1.1, a one standard deviation increase in
pitch slope was associated with a decrease in accuracy from e(1.885)/(1 + e(1.885)) = 0.868
to e(1.885−0.260)/(1 + e(1.885−0.260)) = 0.835.
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Table 1. The association between PSFs and retrieval performance.

Accuracy Response latency (ms)

(1. without RT) (2. with RT) (3. without accuracy) (4. with accuracy)

Response latency (ms) −0.001***

Accuracy (cor./incor.) −1541.371***

Pitch slope (z) −0.260*** −0.196*** 148.827*** 99.541***

Speaking speed (z) 0.099*** 0.058 −90.516*** −70.819***

Average intensity (z) 0.120** 0.084* −62.560** −39.173*

Jitter (z) −0.049 −0.065 16.411 4.902

Shimmer (z) 0.050 0.087 38.286 46.826*

Average pitch (z) −0.030 −0.028 20.423 13.315

Constant 1.885*** 3.226*** 2264.926*** 3569.319***

Observations 7,334 7,334 7,334 7,334
∗p<.05; ∗∗p<.01; ∗∗∗p<.001

Table 1.3 shows that pitch slope, speaking speed and intensity explain variation in
response times (also see Fig. 2B): The higher the pitch slope, the higher the response
times. The higher the speaking speed, the lower the response time. The louder the
learner gave the answer, the higher correctness. Finally, the higher the mean local shim-
mer, the longer the response latency. Table 1.4 shows the model in which accuracy is
also included. In this case, pitch slope, speaking speed and intensity remain significantly
associated with response latency.

Overall, the mixed effects models corroborate what is apparent in the correlational
analyses reported above: Three features show the strongest association to memory
strength or ease-of-retrieval. First, rising pitch (positive pitch slope) utterances are asso-
ciated to low accuracy and long response latencies. Second, high speaking speed is asso-
ciated with high accuracy and low response times. Third, we found that loud responses
(high intensity) are associated to high accuracy and low response times. These results
indicate that in the context of a learning task, PSFs are informative of the extent to
which a learner has successfully memorized an item.

3.2 Improving Predictions of Future Performance Using Speech Prosody

The results discussed in the previous section demonstrate that a number of PSFs
recorded during spoken retrieval attempts are associated with retrieval accuracy and
response times, and therefore carry information about the extent to which the learner
has successfully memorized an item. Given the reliability of these effects in the context
of a learning paradigm, we will now test whether they can be used to improve out-
of-sample predictions of future retrieval success in applied learning settings. We used
penalized regression analyses to predict retrieval performance (accuracy and response
times) from speech prosody during earlier retrieval attempts for the same item.

Table 2 shows the average results of four penalized regression models, two pre-
dicting current trial accuracy and two predicting current trial response times. For each
outcome variable, we fitted one model with the original MemoryLab algorithm’s esti-
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mations as predictor (right columns, ‘without PSFs’) and one model that contained both
the original MemoryLab model estimations, as well as the six PSF recordings for the
five preceding repetitions of the same item (left columns, ‘with PSFs’). The results
show that using previous repetition PSFs in addition to the original model resulted in
increased test classification accuracy, precision, recall, and F1-score values. The F1-
score increased by 13.5%, indicating substantial improvements in the precision and
robustness of the model by adding PSFs. Using previous repetition PSFs also resulted
in an increase in explained variance in response times (6.9%), and a reduction in overall
Root Mean Square Error (RMSE).

Table 2. Improving model predictions using prosodic speech features.

Accuracy With
PSFs

Without
PSFs

RT With
PSFs

Without
PSFs

Accuracy 0.882 0.864 Test R2 72.689 67.953

Precision 0.684 0.657 Test RMSE 700.484 749.035

Recall 0.339 0.286

F1-score 0.453 0.399
Note: values represent averages for 10-fold cross validated test pre-
dictions.

Figure 2B shows the importance of each of the PSFs included the in elastic net
regression analyses. The average absolute feature importance (defined as the penalized
regression coefficient) is shown on the x-axis. The black numbers indicate how many
trials back the PSF was recorded. The best predictor of response times is pitch slope,
followed by speaking speed and intensity. For most PSFs, the previous two repetitions
were the most important predictors of current trial response time. PSFs recorded more
than two repetitions in the past are generally less informative for current trial perfor-
mance (more than two repetitions back, most speech features have very low coeffi-
cients). For average pitch, jitter and shimmer, we found low coefficients and inconsis-
tent signs over preceding repetitions, underlining the lack of evidence for the informa-
tive value of these features. Overall, these results show that using pitch slope, speaking
speed and intensity for the two repetitions preceding the current repetition most substan-
tially improve predictions of future recall performance relative to accuracy and response
latency.

4 Discussion

In this study, we (a) explored the association between high-level prosodic features in
speech and recall performance in a learning paradigm, and (b) examined the possibility
of using prosodic speech information to improve a cognitive model of memory retrieval
that can be used to for item scheduling in an applied learning system. To this end, we
analysed speech recordings from over 7,000 retrieval attempts for 44 participants and
automatically extracted six high-level PSFs. We will reiterate and interpret the results
for (a) and (b) in turn.
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Correlational and mixed effects generalized linear regression analyses revealed that
accuracy during spoken retrieval attempts is negatively associated to pitch slope, and
positively associated to speaking speed and intensity. In other words, for incorrect
retrieval attempts, participants were more likely to speak with rising pitch, lower speak-
ing speeds, and lower intensity than for correct retrieval attempts. In addition, we found
that response latency is positively associated to pitch slope, and negatively associated to
speaking speed and intensity. These results replicate and extend the findings of Goupil
and Acouturier [6], who recently reported that higher intensity was associated with
higher retrieval accuracy. Intuitively, our results also align with earlier research on the
association between confidence and prosody, in which rising pitch and lower speaking
speeds were tied to uncertainty about a response [6,10]. While subjective confidence
in the response was not directly measured in this study, it is reasonable to assume that
overall confidence in accurate and fast retrieval attempts was higher than confidence
in inaccurate or slower responses. Finally, we found no clear effects of average pitch,
average jitter and average shimmer in an utterance. These features were included in our
analyses on an exploratory basis (we are not aware of any relevant studies that report
an association between accuracy or subjective confidence in a response). We conclude
that the latter features are not useful indices of memory strength in a learning context.

We found that using previous repetition PSFs, in addition to previous repetition
response latencies and accuracy scores, to predict current repetition accuracy resulted in
increased classification performance. The F1-score of the model increased with 13.5%,
indicating that the balanced predictive performance of the model improved substan-
tially. Similarly, we show that utilizing previous repetition PSFs increases the explained
variance of the model predicting current repetition response latencies by 6.9%. Overall,
these results show that using previous repetition PSFs in addition to response times and
accuracy can result in a substantial improvement of overall adaptive learning model
performance. These results demonstrate that PSFs provide information in addition to
accuracy and response times that can be used as a behavioral proxy of latent memory
strength in adaptive learning models.

Our results lead to various suggestions for future work. First, although we find that
information gathered through prosodic speech analyses can improve model predictions,
our results do not show why a specific speech signature is associated with better or
worse recall performance. More specifically, pitch slope, speaking speed, and inten-
sity could reflect the objective memory strength for a vocabulary item, much like the
assumed relationship between memory strength and response times [4]. Alternatively,
they could be a reflection of subjective confidence in the response. Future studies should
shed light on this issue by directly assessing the speakers’ subjective confidence in each
response. Second, this study used single words as cues and response options. Arguably,
more or stronger prosodic information could be extracted if combinations of multiple
words, or short sentences are used, because longer utterances give the speaking more
opportunity to vary intonation, rhythm and stress [17]. Finally, in the current study,
PSFs were extracted offline after completion of the experiment. In future projects, PSFs
should be extracted to update predictions of future performance in real time to optimize
scheduling or feedback presentation in an adaptive learning session. A technical chal-
lenge associated with this approach is that for the current study, PSFs were standardized
by each learner using the complete learning history for that learner, which would not be
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possible in a real-time setting. Future studies should consider the practical feasibility of
standardising PSFs based on the first couple of responses only.

In addition, it is important to consider issues related to the specificity of participant
sample used in the current study. In an additional set of analyses, we found no signif-
icant effects of age or gender on the effects reported in this study. In addition, earlier
research suggests that universal PSFs are found in speech throughout languages and
cultures [7,17,29]. Nevertheless, we acknowledge that it is of key importance to further
examine if the results found in this study, which can be construed as a proof-of-concept,
generalize to other groups of learners throughout the world.

Despite these open questions, our results have important implications. First, they
have fundamental relevance as they are the first to couple a specific prosodic speech
signature (falling pitch, high speaking speed, high vocal intensity) to high accuracy and
fast responses in a learning paradigm, suggesting that PSFs may be used as a measure
of speaker confidence during memory recall. More generally, although more research
into the exact nature of the relationship between PSFs and memory performance is nec-
essary, PSFs may prove to be a valuable new tool in the further exploration of important
open research questions (e.g., about speaker certainty/confidence or feeling-of-knowing
and a range of other meta-memory judgements). Second, our results are educationally
relevant because they can contribute to improving cognitive models of memory retrieval
that are used in real world learning settings: The results of this study lead to specific
recommendations on how to use PSFs in adaptive learning models.

In conclusion, we show that spoken retrieval attempts contain information about
the extent to which a learner has memorized an item, and that PSFs can be used to
improve model predictions for learner performance on future trials. As such, they are
a promising candidate to be used in learning research and in educationally relevant
speech-based learning applications.
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